3 research outputs found

    Levels of explanation in biological psychology

    Get PDF
    Until recently, the notions of function and multiple realization were supposed to save the autonomy of psychological explanations. Furthermore, the concept of supervenience presumably allows both dependence of mind on brain and non-reducibility of mind to brain, reconciling materialism with an independent explanatory role for mental and functional concepts and explanations. Eliminativism is often seen as the main or only alternative to such autonomy. It gladly accepts abandoning or thoroughly reconstructing the psychological level, and considers reduction if successful as equivalent with elimination. In comparison with the philosophy of mind, the philosophy of biology has developed more subtle and complex ideas about functions, laws, and reductive explanation than the stark dichotomy of autonomy or elimination. It has been argued that biology is a patchwork of local laws, each with different explanatory interests and more or less limited scope. This points to a pluralistic, domain-specific and multi-level view of explanations in biology. Explanatory pluralism has been proposed as an alternative to eliminativism on the one hand and methodological dualism on the other hand. It holds that theories at different levels of description, like psychology and neuroscience, can co-evolve, and mutually influence each other, without the higher-level theory being replaced by, or reduced to, the lower-level one. Such ideas seem to tally with the pluralistic character of biological explanation. In biological psychology, explanatory pluralism would lead us to expect many local and non-reductive interactions between biological, neurophysiological, psychological and evolutionary explanations of mind and behavior. This idea is illustrated by an example from behavioral genetics, where genetics, physiology and psychology constitute distinct but interrelated levels of explanation. Accounting for such a complex patchwork of related explanations seems to require a more sophisticated and precise way of looking at levels than the existing ideas on (reductive and non-reductive) explanation in the philosophy of mind

    Genomic structure, organization and localization of the acetylcholinesterase locus of the olive fruit fly, Bactrocera oleae

    No full text
    Acetylcholinesterase (AChE), encoded by the ace gene, is a key enzyme of cholinergic neurotransmission. Insensitive acetylcholinesterase (AChE) has been shown to be responsible for resistance to OPs and CBs in a number of arthropod species, including the most important pest of olives trees, the olive fruit fly Bactrocera oleae. In this paper, the organization of the B. oleae ace locus, as well as the structural and functional features of the enzyme, are determined. The organization of the gene was deduced by comparison to the ace cDNA sequence of B. oleae and the organization of the locus in Drosophila melanogaster. A similar structure between insect ace gene has been found, with conserved exon-intron positions and junction sequences. The B. oleae ace locus extends for at least 75 kb, consists of ten exons with nine introns and is mapped to division 34 of the chromosome arm IIL. Moreover, according to bioinformatic analysis, the Bo AChE exhibits all the common features of the insect AChE. Such structural and functional similarity among closely related AChE enzymes may implicate similarities in insecticide resistance mechanisms
    corecore